

EXPLOSIVE CLOSE TO A METALLIC PLATE

Outline of the presentation

- 1 Introduction
- 2 Experimental set up and results (picture of the target)
- 3 Energy balance deformation and petalisation
- 4 Momentum balance shear wave displacement
- 5 Picture of the phenomenon during the time
- 6 Local ejected part velocity
- 7 Both close charges
- 8 Conclusion

EXPLOSIVE CLOSE TO A METALLIC PLATE: Introduction

Explosive charge close to a plate

A strong localised loading for the structure of a ship

09-13/05/16
D. Leriche DGA/Naval System

EXPLOSIVE CLOSE TO A METALLIC PLATE: Introduction

Short stand-off

strong localized deformation of the plate

Long stand-off

Smooth global deformation
of the plate

D. Leriche DGA/Naval System

EXPLOSIVE CLOSE TO A METALLIC PLATE: Experimental set up

EXPLOSIVE CLOSE TO A METALLIC PLATE: Experimental results

EXPLOSIVE CLOSE TO A METALLIC PLATE: Experimental results

Damage on the plate and ejected part

09-13/05/16
D. Leriche DGA/Naval System

EXPLOSIVE CLOSE TO A METALLIC PLATE: Experimental results

Dimension of the ejected part

8

09-13/05/16
D. Leriche DGA/Naval System

Energy E_m of the mechanical effects on the plate are:

- *longitudinal shear energy W_{c1}
- *transversal shear energy W_{c2}
- *bending energy of both shaped petals W_b
- *kinetic energy of the main ejected part E_{cd}

09-13/05/16
D. Leriche DGA/Naval System

Shear energy given by:

$$W_{c1} = \frac{\tau . l_t . h^2}{2}$$

 $W_{c2} = \frac{\tau . H_a . h^2}{2}$

Bending energy given by:

$$W_b = \frac{\sigma_e.s.b.h^2}{4.\rho}$$

10

10

09-13/05/16

The local specific impulse is given by

$$i = i_0 \cdot \cos^4 \theta$$

And we suppose that the specific kinetic energy is given by:

$$e = \frac{i^2}{2 \cdot \rho \cdot h}$$

The whole transmitted energy to the plate by the explosive is given by:

$$E_{m} = 2.\int_{0}^{y} \frac{i^{2}}{2.\rho.h} dy = 2.W_{b} + 2.W_{c1} + 2.W_{c2} + E_{cd}$$

E_{cd} is the kinetic energy of the ejected part.

09-13/05/16

From the equality of the energy, we have :

Test	1	2
i ₀ (N.s/m ²)	72516,7	65424

From the experimental results, we have also:

$$i_0 = \rho.h.V_1$$

V₁ is the local ejected part velocity ρ is the thickness of the plate h is the thickness of the plate

Explosif	Plastrite
W (kg)	1
I (m)	0,117
r ₀ (m)	0,045

$$i_0 = 66000 \ N.s/m^2$$

$$I = i_0.S = 2602 N.s$$

I total impulse of the explosive S surface of the explosive charge

$$I = \frac{8}{27}.W.D$$

Orlenko's relation

12

09-13/05/16

Equivalent impulse

We can show:

DGA

09-13/05/16

Transversal shear wave displacement

transversal shear wave

Because the momentum conservation, we have:

$$\frac{\rho . h. v}{i_0} = \frac{1 + j. \left(1 - \frac{y}{L} - \frac{y^2}{L.b}\right)}{\frac{y}{L}}$$

with:
$$j = \frac{\tau . h}{i_0 . C_n}$$

 $C_p \approx 500 \ m \ / \ s - 600 \ m \ / s_{09-13/05/16}$ MINISTÈRE

MINISTÈRE DE LA DÉFENSE

09-13/05/16

MINISTÈRE DE LA DÉFENSE Local deformation of the plate

09-13/05/16
D. Leriche DGA/Naval System

Ejection of the central part of the plate

MINISTÈRE DE LA DÉFENSE

DGA

09-13/05/16
D. Leriche DGA/Naval System

DGA

MINISTÈRE

Beginning of the impact of the ejected part on the witness plate

09-13/05/16

End of the impact of the ejected part on the witness plate

20

EXPLOSIVE CLOSE TO A METALLIC PLATE: Local ejected part velocity

We have the following relation:

We use the Gurney's hypothesis with some modifications

- *momentum conservation
- *energy conservation
- *constant specific impulse for the free surface
- *parabolic shape of the velocity field for the free surface

09-13/05/16

EXPLOSIVE CLOSE TO A METALLIC PLATE: both close charges

---- Plastic hinge

Initiation

EXPLOSIVE CLOSE TO A METALLIC PLATE: both close charges

EXPLOSIVE CLOSE TO A METALLIC PLATE: conclusion

Conclusion

*Energy balance between the explosive and different mechanisms of deformation (shear, bending)

estimation of the specific energy of the explosive loading on the plate.

*Assumption of the transverse displacement as a result of a shear wave moving with a constant velocity parallel to the surface of the plate

estimation of the velocity field of the plate following the loading impulse from the explosive.

*From the Gurney's relation

determination of the local initial velocity of the plate. (calculated value 640 m/s, experimental value 700 m/s)

24